PROBLEM INVOLVING A THREE-DIMENSIONAL BOUNDARY
LAYER IN A GENERALIZED STOKES FLUID

V. A. Bubnov UDC 532,517.2

A generalized Stokes fluid is defined, and a new similarity criterion, the Truesdell number,
is discussed, Equations of the boundary-layer type in an incompressible gas are derived, A
detailed study is made of the self-similar problem of a three-dimensional boundary layer.

1. Definition of a Generalized Stokes Fluid and Relation with the Kinetic Theory of Gases, Following
[1], we define a generalized Stokes fluid as a continuous medium in which there existcertain material con-
stants uy and T, the natural viscosity and characteristic temperature, of dimensionality

[p'l)] = Mm L_lt_l’ [TD] =0,

and in which the viscous-stress tensor depends on the rate-of-strain tensor Sij and on ug, Ty, Pm. P, and T:

’Vif:f(p’l)’ TO’ P> Ps T: Sij)’

@)
vy =0, if §;;=0.
For an isotropic medium, Eq. (1) becomes
vi; = Eofi; + EiSi; + EsSunShj 2)
where
Ey Ey, Ey =f(g Tos Pmr 2o Ts 1y, Iy, 1) @)

Here I, I, and I are the principal invariants of the rate-of-strain tensor. From the eight dimensional
quantities formed from the three independent dimensionalities MmL'It'i, t, and ® on the right side of Eq,
(3), we can form the five dimensionless combinations
2 3
B i Lg.lz’ p‘_g I, p T

_-!

Po Po Po Pm Ty
The dimensionless combinations on the left side of Eq. (3) are
Fo=—§9-, Fo=br g - Ezgo .
Py Ko Ko

We can then rewrite Eq. (3) in dimensionless form,

2 3 T
FO’ Fl’ FZ :f<b-1]’ —y/%]z) '—H’g—]m —E—'y _E:—)r
0

o Po ] P

and replace Eq. (2) by

2
Vis = DoF oSy -+ toFsSy; + %"—Fzsihsh,.. @)
0

Truesdell [1] proposed the following polynominalrepresentation for the coefficients Fy, ¥y, and ¥y
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Within terms of second order inclusively, Eq. (4) becomes, with an account of (5),
P‘o [Foloo I 61[ + Flooosz]] + [F0200[?611+F1100 ISU + FOOLO 2611 + F2000 szkJ]' (6)
We introduce the shear-velocity tensor,

8 1 CTO 1 :
Sij=Siy— 3 Iidij 83Sy; = Sikskj—‘?’— (i —2r) Sijs (7)

ij
if
3F0100+ FIOO!) =0,

3F 900 + Fi100 -+ Fa000=0, 8)
3F, o010 2F 2000 — 0,

Eq. (6) becomes

(e}

7Sk ) ©)

IJ'OFIOODSU + [Fuool § 1T Fago S;

The first relation in (8) is the Stokes condition in the classical case. We note that Eqs. (8) are the
conditions for the equality of the pressure p to the hydrostatic pressure, obtained by Truesdell {1] in a dif-
ferent manner.

A new dimensionless complex Iv‘oéij /po, first introduced by Truesdell, appears among the nonlinear
terms in Eq. (9); this complex is the criterion for the appearance of nonlinear effects. Accordingly, along
with the ordinary Reynolds, Mach, etc, similarity criteria, we have a new one — the Truesdell number,
which becomes significant at high altitudes or in shock waves, because of the sharp velocity gradient. We
note that Predvoditelev [2] used the reciprocal of the Truesdell number in evaluating acoustic dispersion.

If the basic assumptions of the kinetic theory of gases hold, the Truesdell number can be related to
the familiar Knudsen and Mach numbers:

Tr = BoSu _ BcUn _ 1Un gy mepet,
Po 0Ly Lne

We note that we could derive Eq. (9) on the basis of molecular-kinetics concepts., For this purpose,
we consider the expression for the viscous~stress tensor with an account of the Barnett approximation,
which holds in the dynamics of low-density gases {3]:

3 ] e T
_2;18” -+ ml———IlS R 05 [__ (F _1 oy _ ) ( 0) CoSij] + g e 9 or
p p P or or

Jr or oT 0Or or
@ T, @ T T
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In the expression in square brackets inthe coefficient of w,, the last two terms show the dependence
of the viscous-stress tensor on the antisymmetric part of the velocity-gradient tensor (a/ar)co, i.e., onvor-
tex motion (1/2 rotey). In deriving Eq. (9), however, we neglected this dependence, so in determining the
nature of the coefficients in Eq. (9) we will neglect these two terms in Eq. (10). The other terms in the
coefficient of wy are on the order of the following dimensionless complex:

MZ 129202 _ 2 .
poLn oLl Lm Kn

A similar complex can be formed from the coefficients of ws, @y, and w;, so their contributions are
on the order of the square of the Knudsen number, The expressions in the coefficients of w; and w; are
obviously on the order of the Truesdell number.
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Since for supersonic flow of a_continuous medium we can assume Kn? <« Tr, we can replace (10) by

[s)

Vij = 2P§ii += oy Lpz‘ ]1§ij + (’36“%2‘ §ii§ii . (11)
Comparing (9) and (11), we find
Ho=2ts Fio=1, Fuuw= 2 s Fawa= %+ Po=P, (12)
where, for Maxwell molecules [3], we have
o=y (_;““{" s ) =8 13)

2. Derivation of the Equations of a Three-Dimensional Boundary Layer in an Incompressible Gas.
For convenience, we rewrite Eq. (9) for an incompressible gas as

3 j.
Pi; = — pby; + 2uS;; + 4K,S,,S, (14)
where
2 2
K1: £ Fii00 Kz_—‘ Lonoo-
0 - 0
The general dynamical equations of a continuous medium with body forces neglected are [4]

dn Oy | Opyx ., OPsy
dt ox Ay +

dv _ 0Py I Opyy T 0p.y

p

’

L7 ox y oz (15)
dw _ 0py , 0Py, | Opy,
T T ox oy T e

where the Pjj must be determined from Eq. (14). In system (15) we introduce the dimensionless variables
u=Uu, v=Vu, w=Uw,
x=Lx, y=¥y, z=Lz, p=Pp.
We set up the arbitrary scales as is done in the theory of a planar boundary layer [5]:

L U LU
y ==, V =T, P = U2 =
VR VRe & P Re=—
Then, discarding terms on the order of 1/Re in (15), we find (omitting the bars over the dimensionless quan-
tities)

e o e T
e o )5 ) (5)]
U )%”-“s";(%‘;%f—)“%[?—;‘(%‘Z—+i‘i)—2%"a—‘§]+%(%w;)z-<w>
Tt TR0
where
I R

The characteristic pressure p, can be chosen, e.g., equal to the pressure p,, in the incident flow,
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TABLE 1, Components of the Friction Forces at the
Wall for Certain Truesdell Numbers

Tr ! a by £ (0) g (o)
0 0,2509 10,2509 1,2509 1,2509
0,15 0,0102 0,4335 1,0102 1.4335
0,50 —0,8287 0,7097 0,1713 |+ 11,7097

Integrating the second equation in system (16) over y, and assuming that du/9y and 9w/dy vanish at the
outer boundary of the boundary layer, we find an equation for the pressure within this layer:

e GG e

Here p,(x, 2} is the specified pressure distribution at the outer boundary of the boundary layer. Substituting
{17) into (16), we finally find

T AVIEN L L XARENEE AL Po_ow o
7 0z dy 0z dy dy oy ox 0y g oxdy H
L L TE R A NN MR T A
ot 0z oy? dy \ Oy Ox ox dy ) dy Oy 0z Oy dy Oyoz )]
ou do  dw
ax |y T T

We can use the standard boundary conditions:
u=v=0 at y=0,
19)
u=U(x, 2), w=W(x, 2) at y= o0,
where the external-flow velocities Ux, z) and W(x, z) must satisfy the Euler equations, given in our case
by

o dp
U Z 9P
+ 9 ax’
(20)
6W ap
U — —_— =R
ox + 0z 0z

For simplicity we assume that the velocities u, v, and w are functions of only the two variables x and
y; then we can specify the dimensionless velocities Ufx) and W (x) as

Ugy=x, W)=1x,
converting system (18) {o
u=xf"(g), v=—F@), w=xg@.
To determine f and g we must solve a system of nonlinear ordinary differential equations,

P+ + (=% + Algg" —g") =0,
@1

g+ +0—Fg+ AllglY —2/'g"} =0
with numerical boundary conditions '
F0) =7 (0) = g(0)=0,
[’ (00) = g(o0) =1.

Following Dorodnitsyn [6], we multiply all the terms in system (21} by the smoothing function ®(y) and in-
tegrate from zero to infinity; then we find a system of integrodifferential equations:

22)

@1+ 17+ (=1 + Aleg’ —™1dy =0,
' | @3)

[ %) g + I’ -+ (1—F'0) + AllgFY —2F'g"l} dy =O.
0
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Fig. 1. Velocity components along the x axis (a) and along the z
axis (b} in a three-dimensional boundary layer, 1) Tr = 0; 2)0.5,
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Fig. 2. Excess pressure
arisingatthewall ina three-
dimensional boundary layer
for certain Truesdell num-~
bers, 1) Tr = 0,5; 2) 0,15,

Below we will use the first-approximation solution of system
(23):
xi (y ) = e"y’
e A T F -
2 2
' = (l—ev) (14 ae™),
g = (I—e¥) (14 bye™).

= 24)

Substituting (24) into (23), and integrating from zero to infinity, we
find a first~approximation system of algebraic equations:

7la,+42A4b, = 18—36A4 —3a3— 18457,
(3—124) a,+ (68—304) b, = 18+25,24 + (184 —3) a,b,.

{25)

The values of the friction at the wall in which we are interested
are found in this approximation from

F0) =14a, g ©)=1+0b,. (26)

Table 1 shows the components of the friction force at the wall in the case of a Maxwell gas, calculated
from Egs. (26) for certain Truesdell numbers *

From Fig, 1, which shows the

velocity components within the boundary layer, we see that the profile

of the component along the x axis approaches the separation profile with increasing Reynolds number, while

the profile of the velocity component

along the z axis becomes "fuller," and the boundary layer becomes nar-

rower in this direction, Figure 2 shows the additional pressure calculated from Eq, (17).

NOTATION
Vi3 is the viscous~stress tensor;
Pij is the stress tensor;
;5 is the rate-of-strain tensor;
&/ driey is the velocity-gradient tensor;

@/or)cy = éij is the rate-of-shear

tensor;

Tr is the Truesdell number;

Kn is the Knudsen number;

M is the Mach number;

My, is the dimensionality of mass;

L is the dimensionality of length;

t is the dimensionality of time;

® is the dimensionality of temperature;

Py is the characteristic pressure in the flow;
z is the molecular mean free path;

r is the arithmetic mean molecular velocity;
p is the density;

*In this case the model of a Maxwell
Eq, (12).

gas is not completely rigorous because of the approximate validity of
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Um is the characteristic mass velocity;

Lm is the characteristic linear dimension of the solid;
Re is the Reynolds number;

u is the velocity component along the x axis;

v is the velocity component along the y axis;

w is the velocity component along the z axis.
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